

Home Search Collections Journals About Contact us My IOPscience

Stochastic formulation of quantum mechanics based on a complex Langevin equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1990 J. Phys. A: Math. Gen. 23 5535 (http://iopscience.iop.org/0305-4470/23/23/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 09:53

Please note that terms and conditions apply.

Stochastic formulation of quantum mechanics based on a complex Langevin equation

Hiroshi Okamoto

Department of Physics, Waseda University, Tokyo 169, Japan

Received 22 January 1990, in final form 8 August 1990

Abstract. It is shown that a stochastic process described by a complex Langevin equation leads us to real-time quantum mechanics. We also derive a relation between a transition probability in our theory and a transition probability amplitude in real-time quantum mechanics in the framework of path-integral formulations. Finally, taking a harmonic oscillator case as an example, the Fokker-Planck equation is solved exactly, and a nondissipation property of the stochastic process is pointed out.

1. Introduction

Formal similarities between quantum mechanics and the theory of stochastic processes have been pointed out and investigated by many authors [1] since the beginning of quantum mechanics. It is well known that the Schrödinger equation for a free particle has the same form as the diffusion equation for free Brownian motion, in the following way. The Schrödinger equation for a free particle is

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\Psi(x,t)$$
(1.1)

where m, \hbar and $\Psi(x, t)$ are the particle mass, Planck constant and wavefunction, respectively. Through the replacement

$$it \to s \qquad \Psi(x, t) \to \Psi(x, s)$$
 (1.2)

t and s being real-time and imaginary-time, respectively, (1.1) turns to the diffusion equation for free Brownian motion and diffusion constant $\alpha = \hbar/2m$:

$$\frac{\partial}{\partial s}\Psi(x,s) = \alpha \frac{\partial^2}{\partial x^2}\Psi(x,s).$$
(1.3)

As is also well known [2], the above analogy can be generalized to the case for a particle in a potential. Imaginary-time quantum mechanical motion of a particle in a potential can also be described by a Fokker-Planck equation, or by a corresponding Langevin equation. Thus imaginary-time quantum mechanics can be formulated within the stochastic-theoretical framework. This formulation seems to be useful for numerical simulations.

From the fundamental point of view, however, it would be important to examine whether real-time quantum mechanics can also be formulated within the stochastictheoretical framework. This is the task of the present paper. At first sight this seems to be not so easy, because a straightforward application of the manipulation of the stochastic formulation of imaginary-time quantum mechanics to real-time quantum mechanics leads us to a complex Fokker-Planck function. Such a function cannot be explained as a probability distribution. In this paper, we overcome this difficulty by means of a complex Langevin equation which yields a real positive probability distribution.

This paper is organized as follows. In section 2, for convenience for later discussions, we briefly review the stochastic formulation of imaginary-time quantum mechanics. In section 3, we present such a complex Langevin equation and show that it leads us to the real-time Schrödinger equation. In section 4, we derive a relation between a transition probability in our theory and a transition probability amplitude in real-time quantum mechanics in the framework of path-integral formulations of both theories. In section 5, taking a harmonic oscillator case as an example, the Fokker-Planck equation is solved exactly, and a non-dissipation property of the stochastic process is pointed out. Section 6 is devoted to concluding remarks.

2. Stochastic formulation of imaginary-time quantum mechanics

The Schrödinger equation for a particle in a potential V(x) is

$$i\hbar\frac{\partial}{\partial t}\Psi(x,t) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V(x)\right)\Psi(x,t).$$
(2.1)

Through the replacement (1.2), (2.1) turns to the imaginary-time Schrödinger equation

$$\hbar \frac{\partial}{\partial s} \Psi(x, s) = \left(\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - V(x)\right) \Psi(x, s).$$
(2.2)

Let us introduce a function, W(x), which is a solution of the following Riccati-type differential equation:

$$V(x) = \frac{m}{2} \left[\left(\frac{\partial W(x)}{\partial x} \right)^2 - \frac{\hbar}{m} \frac{\partial^2 W(x)}{\partial x^2} \right] + E$$
(2.3)

where E is a suitable constant which will be determined later. By the transformation

$$W(x) = -\frac{\hbar}{m} \ln \varphi(x)$$
(2.4)

(2.3) becomes the quantum mechanical Hamiltonian eigenequation

$$\left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}+V(x)\right)\varphi(x)=E\varphi(x).$$
(2.5)

Hereafter, we shall require W(x) to be a real function. Then, $\varphi(x) > 0$ for all x. This means that the only permissible solution of (2.5) is the ground state; $\varphi(x) = \varphi_0(x)$, $E = E_0$. Substituting (2.3) into (2.2), we have

$$\hbar \frac{\partial}{\partial s} \Psi(x, s) = \left\{ \frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} - \frac{m}{2} \left[\left(\frac{\partial W(x)}{\partial x} \right)^2 - \frac{\hbar}{m} \frac{\partial^2 W(x)}{\partial x^2} \right] - E \right\} \Psi(x, s).$$
(2.6)

Further introducing a function, P(x, s), defined by

$$P(x,s) = \exp\left(\frac{1}{\hbar} \left(Es - mW(x)\right)\right) \Psi(x,s)$$
(2.7)

we see that P(x, s) obeys

$$\frac{\partial}{\partial s} P(x,s) = \frac{\hbar}{2m} \frac{\partial^2}{\partial x^2} P(x,s) + \frac{\partial}{\partial x} \left(\frac{\partial W(x)}{\partial x} P(x,s) \right)$$
(2.8)

which is a Fokker-Planck equation for a stochastic process with drift velocity $\partial W(x)/\partial x$ and diffusion constant $\hbar/2m$. This stochastic process can also be described by a stochastic differential equation, i.e. a Langevin equation given in the form

$$\frac{\mathrm{d}}{\mathrm{d}s}x(s) = -\frac{\partial W(x)}{\partial x}\Big|_{x \to x(s)} + \eta(s)$$
(2.9*a*)

where $\eta(s)$ is a Gaussian white noise which satisfies the following statistical properties:

$$\langle \eta(s) \rangle = 0 \tag{2.9b}$$

$$\langle \eta(s)\eta(s')\rangle = \frac{\hbar}{m}\,\delta(s-s').$$
 (2.9c)

If the Schrödinger equation (2.1) gives a finite-energy ground state which is normalizable and non-degenerate, the above stochastic process gives a thermal equilibrium state at the limit $s \rightarrow \infty$. The *n*-point stochastic correlation function at this thermal equilibrium coincides with the *n*-point ground-state-to-ground-state Green function in imaginary-time quantum mechanics. Actually, Schneider *et al* [2] calculated this Green function by a numerical simulation based on the Langevin equation (2.9).

3. Stochastic formulation of real-time quantum mechanics based on a complex Langevin equation

In order to make a transition from the imaginary-time formulation reviewed in the preceding section to the real-time formulation, first we introduce the replacement

$$s \rightarrow it$$
 $x(s) \rightarrow x(t)$ $\eta(s) \rightarrow -i\eta(t)$. (3.1)

Then, the imaginary-time Langevin equation (2.9) turns to the form

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = -\mathrm{i}\frac{\partial W(x)}{\partial x}\Big|_{x \to x(t)} + \eta(t)$$
(3.2*a*)

$$\langle \eta(t) \rangle = 0 \tag{3.2b}$$

$$\langle \eta(t)\eta(t')\rangle = \frac{\mathrm{i}\hbar}{m}\delta(t-t'). \tag{3.2c}$$

For derivation of (3.2c) from (2.9c), we have used the formal relation $\delta[i(t-t')] = (1/i)\delta(t-t')$.

To make sense of (3.2), we must consider x(t) and $\eta(t)$ to be complex variables because of the imaginary coefficients in (3.2). Then, we must treat (3.2) as a Langevin equation for real and imaginary parts of x(t). Such an equation is called the *complex Langevin equation*. Methods of the complex Langevin equation, which we use throughout this paper, have been investigated and developed in relation to the Minkowski formulation of Parisi and Wu's stochastic quantization [4] and numerical simulations of complex systems [5]. In (3.2a), W(x) is also determined by the Riccati-type differential equation (2.3). In the imaginary-time formulation, we have required W(x) to be a real function. In the real-time formulation, W(x) is not necessarily a real function because (3.2) is a complex-valued equation. In this paper, however, we shall successively require W(x) to be a real function for simplicity. Notice that in $(3.2a) \partial W(x)/\partial x|_{x\to x(t)}$ is complex although W(x) is real.

One of the simplest ways to define the complex random variable $\eta(t)$ satisfying (3.2b, c) in terms of real Gaussian white noises is

$$\eta(t) \equiv \sqrt{\frac{\hbar}{2m}} \left[(\eta_1(t) - \eta_2(t)) + i(\eta_1(t) + \eta_2(t)) \right]$$
(3.3*a*)

where $\eta_1(t)$ and $\eta_2(t)$ are real Gaussian white noises satisfying

$$\langle \eta_1(t) \rangle = \langle \eta_2(t) \rangle = 0 \tag{3.3b}$$

$$\langle \eta_1(t)\eta_1(t')\rangle = A\delta(t-t') \tag{3.3c}$$

$$\langle \eta_2(t)\eta_2(t')\rangle = B\delta(t-t') \tag{3.3d}$$

$$\langle \eta_1(t)\eta_2(t')\rangle = 0 \tag{3.3e}$$

$$A - B = 1$$
 $A > 0$ $B > 0$. (3.3*f*)

Hereafter, we use the following notation:

$$x_{\mathsf{R}}(t) \equiv \mathsf{Re}(x(t))$$
 $x_{\mathsf{I}}(t) \equiv \mathrm{Im}(x(t))$ (3.4*a*)

$$\eta_{\mathsf{R}}(t) \equiv \mathsf{Re}(\eta(t)) \qquad \eta_{\mathsf{I}}(t) \equiv \mathrm{Im}(\eta(t))$$
 (3.4b)

$$R(t) = R(x_{\rm R}(t), x_{\rm I}(t)) = \operatorname{Re}\left(i\frac{\partial W(x)}{\partial x}\Big|_{x \to x(t)}\right)$$
(3.4c)

$$I(t) \equiv I(x_{\mathsf{R}}(t), x_{\mathsf{I}}(t)) \equiv \operatorname{Im}\left(i\frac{\partial W(x)}{\partial x}\Big|_{x \to x(t)}\right).$$

The equation (3.2a) is now decomposed into real and imaginary parts, as follows,

$$\frac{\mathrm{d}}{\mathrm{d}t}x_{\mathrm{R}}(t) = -R(t) + \eta_{\mathrm{R}}(t) \tag{3.5a}$$

$$\frac{d}{dt}x_{1}(t) = -I(t) + \eta_{1}(t)$$
(3.5b)

where $\eta_{R}(t)$ and $\eta_{I}(t)$ satisfy the following statistical properties:

$$\langle \eta_{\mathsf{R}}(t) \rangle = \langle \eta_{\mathsf{I}}(t) \rangle = 0 \tag{3.5c}$$

$$\langle \eta_{\rm R}(t)\eta_{\rm R}(t')\rangle = \frac{\hbar}{2m}(A+B)\delta(t-t')$$
 (3.5d)

$$\langle \eta_{\rm I}(t)\eta_{\rm I}(t')\rangle = \frac{\hbar}{2m} \left(A+B\right)\delta(t-t') \tag{3.5e}$$

$$\langle \eta_{\mathsf{R}}(t)\eta_{\mathsf{I}}(t')\rangle = \frac{\hbar}{2m}\,\delta(t-t').\tag{3.5}f$$

which obeys the following Fokker-Planck equation:

$$\frac{\partial}{\partial t} P(x_{\rm R}, x_{\rm I}, t) = \frac{\hbar}{4m} \left((A+B) \frac{\partial^2}{\partial x_{\rm R}^2} + 2 \frac{\partial^2}{\partial x_{\rm R} \partial x_{\rm I}} + (A+B) \frac{\partial^2}{\partial x_{\rm I}^2} \right) P(x_{\rm R}, x_{\rm I}, t) + \frac{\partial}{\partial x_{\rm R}} (R(x_{\rm R}, x_{\rm I}) P(x_{\rm R}, x_{\rm I}, t)) + \frac{\partial}{\partial x_{\rm I}} (I(x_{\rm R}, x_{\rm I}) P(x_{\rm R}, x_{\rm I}, t)).$$
(3.6)

Next, we shall show that (3.6) leads us to the real-time Schrödinger equation. For the purpose of this, we introduce the *effective Fokker-Planck distribution*, $P_{\text{eff}}(x_{\text{R}}, t)$, defined by

$$P_{\rm eff}(x_{\rm R},t) \equiv \int_{-\infty}^{+\infty} {\rm d}x_{\rm I} P(x_{\rm R} - {\rm i}x_{\rm I}, x_{\rm I}, t). \tag{3.7}$$

Notice that $P_{\text{eff}}(x_{\text{R}}, t)$ is complex although $P(x_{\text{R}}, x_{\text{I}}, t)$ is real.

Operating a translation operator, $\exp[-ix_1(\partial/\partial x_R)]$, on (3.6) from the left, and performing an integration with respect to x_1 from $-\infty$ to $+\infty$, we obtain the effective Fokker-Planck equation

$$\frac{\partial}{\partial t} P_{\text{eff}}(x_{\text{R}}, t) = i \left[\frac{\hbar}{2m} \frac{\partial^2}{\partial x_{\text{R}}^2} P_{\text{eff}}(x_{\text{R}}, t) + \frac{\partial}{\partial x_{\text{R}}} \left(\frac{\partial W(x_{\text{R}})}{\partial x_{\text{R}}} P_{\text{eff}}(x_{\text{R}}, t) \right) \right].$$
(3.8)

For the derivation of (3.8), we have used the following formulae

$$\exp\left(-\mathrm{i}x_{\mathrm{I}}\frac{\partial}{\partial x_{\mathrm{R}}}\right)x_{\mathrm{R}}\exp\left(\mathrm{i}x_{\mathrm{I}}\frac{\partial}{\partial x_{\mathrm{R}}}\right) = x_{\mathrm{R}} - \mathrm{i}x_{\mathrm{I}}$$
(3.9*a*)

$$\exp\left(-ix_{1}\frac{\partial}{\partial x_{R}}\right)x_{1}\exp\left(ix_{1}\frac{\partial}{\partial x_{R}}\right) = x_{1}$$
(3.9b)

$$\exp\left(-\mathrm{i}x_{\mathrm{I}}\frac{\partial}{\partial x_{\mathrm{R}}}\right)\frac{\partial}{\partial x_{\mathrm{R}}}\exp\left(\mathrm{i}x_{\mathrm{I}}\frac{\partial}{\partial x_{\mathrm{R}}}\right) = \frac{\partial}{\partial x_{\mathrm{R}}}$$
(3.9c)

$$\exp\left(-ix_{1}\frac{\partial}{\partial x_{R}}\right)\frac{\partial}{\partial x_{1}}\exp\left(ix_{1}\frac{\partial}{\partial x_{R}}\right) = \frac{\partial}{\partial x_{1}} + i\frac{\partial}{\partial x_{R}}$$
(3.9*d*)

and assumed that surface terms caused by the integration vanish.

Further introducing a function, $\Psi(x_{R}, t)$, defined by

$$\Psi(x_{\rm R},t) \equiv \exp\left(-\frac{1}{\hbar}\left(iEt - mW(x_{\rm R})\right)\right) P_{\rm eff}(x_{\rm R},t)$$
(3.10)

we see that $\Psi(x_{R}, t)$ obeys the real-time Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\Psi(x_{\rm R},t) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x_{\rm R}^2} + V(x_{\rm R})\right)\Psi(x_{\rm R},t)$$
(3.11)

where (2.3) has been used.

We have thus shown that the stochastic process described by the Langevin equation (3.5) leads us to real-time quantum mechanics.

4. Path-integral formulation

In this section, we shall derive a relation between a transition probability in our theory and a transition probability amplitude in real-time quantum mechanics. For such a derivation, it will be convenient to work in path-integral formulations of both theories.

Let $T(x_R'', x_1'', t''|x_R', x_1', t')$ be a probability in our theory for a transition from $(x_R, x_1) = (x_R', x_1')$ at time t' to $(x_R, x_1) = (x_R'', x_1'')$ at time t''. Following the general theory of stochastic processes, we can write this probability amplitude in the Wiener-Onsager-Machlup path-integral representation [6], as follows,

$$T(x_{R}'', x_{I}'', t''|x_{R}', x_{I}', t)$$

$$= N \int_{(x_{R}(t'), x_{I}(t')) = (x_{R}', x_{I}')}^{(x_{R}(t'), x_{I}(t')) = (x_{R}', x_{I}')} \mathscr{D}x_{R} \mathscr{D}x_{I}$$

$$\times \exp\left(-\int_{t'}^{t''} L_{FP}(x_{R}(t), x_{I}(t), \dot{x}_{R}(t), \dot{x}_{I}(t)) dt\right)$$
(4.1*a*)

where

$$L_{\rm FP}(x_{\rm R}(t), x_{\rm I}(t), \dot{x}_{\rm R}(t), \dot{x}_{\rm I}(t)) = \frac{m}{4\hbar} \left[\frac{1}{A} \left(\frac{dx_{\rm R}(t)}{dt} + R(t) + \frac{dx_{\rm I}(t)}{dt} + I(t) \right)^2 + \frac{1}{B} \left(\frac{dx_{\rm R}(t)}{dt} + R(t) - \frac{dx_{\rm I}(t)}{dt} - I(t) \right)^2 \right].$$
(4.1b)

In (4.1) and in the following, N represents a proper normalization constant in each formula.

It is more convenient for later calculations to rewrite (4.1) in the discretized form $T(x_{R}'', x_{1}'', t''|x_{R}', x_{1}', t')$

$$= N \lim_{n \to +\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \prod_{i=1}^{n-1} dx_{R}(t_{i}) dx_{I}(t_{i}) \times \exp\left(-\sum_{i=1}^{n} \tilde{L}_{FP}(x_{R}(t_{i}), x_{I}(t_{i}), x_{R}(t_{i-1}), x_{I}(t_{i-1}))\Delta t\right)$$
(4.2*a*)

where

$$\begin{split} \tilde{\mathcal{L}}_{FP}(x_{R}(t_{i}), x_{I}(t_{i}), x_{R}(t_{i-1}), x_{I}(t_{i-1}))) \\ &= \frac{m}{4\hbar} \left[\frac{1}{A} \left(\frac{x_{R}(t_{i}) - x_{R}(t_{i-1})}{\Delta t} + R(t_{i-1}) + \frac{x_{I}(t_{i}) - x_{I}(t_{i-1})}{\Delta t} + I(t_{i-1}) \right)^{2} \right. \\ &\left. + \frac{1}{B} \left(\frac{x_{R}(t_{i}) - x_{R}(t_{i-1})}{\Delta t} + R(t_{i-1}) - \frac{x_{I}(t_{i}) - x_{I}(t_{i-1})}{\Delta t} - I(t_{i-1}) \right)^{2} \right] \tag{4.2b}$$

with

$$t_{0} = t' t_{n} = t'' \Delta t = \frac{t_{n} - t_{0}}{n} t_{i} = t_{0} + i\Delta t$$

$$x_{R}(t_{0}) = x'_{R} x_{1}(t_{0}) = x'_{1} x_{R}(t_{n}) = x''_{R} x_{1}(t_{n}) = x''_{1}.$$
(4.2c)

We can rewrite (4.2a), as follows,

$$T(\mathbf{x}_{\mathbf{R}}^{n}, \mathbf{x}_{1}^{n}, t') = N \lim_{n \to +\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \prod_{i=1}^{n-1} d\mathbf{x}_{\mathbf{R}}(t_{i}) d\mathbf{x}_{\mathbf{I}}(t_{i})$$

$$\times \prod_{i=0}^{n} \exp\left(i\mathbf{x}_{\mathbf{I}}(t_{i}) \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right) \exp\left(-i\mathbf{x}_{\mathbf{I}}(t_{i}) \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right)$$

$$\times \exp\left(-\sum_{i=1}^{n} \tilde{L}_{\mathrm{FP}}(\mathbf{x}_{\mathbf{R}}(t_{i}), \mathbf{x}_{\mathbf{I}}(t_{i}), \mathbf{x}_{\mathbf{R}}(t_{i-1}), \mathbf{x}_{\mathbf{I}}(t_{i-1}))\Delta t\right)$$

$$= N \lim_{n \to +\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \prod_{i=1}^{n-1} d\mathbf{x}_{\mathbf{R}}(t_{i}) d\mathbf{x}_{\mathbf{I}}(t_{i})$$

$$\times \exp\left(i\mathbf{x}_{1}^{n} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}^{n}} + i\mathbf{x}_{1}^{i} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right) \exp\left(-i\mathbf{x}_{1}^{n} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}^{n}} - i\mathbf{x}_{1}^{i} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right)$$

$$\times \left(\sum_{i=1}^{n-1} \left[\exp\left(-i\mathbf{x}_{1}(t_{i}) \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right) \times 1\right] \exp\left(-i\mathbf{x}_{1}(t_{i}) \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right)\right)$$

$$= N \lim_{n \to +\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \prod_{i=1}^{n-1} d\mathbf{x}_{\mathbf{R}}(t_{i}) d\mathbf{x}_{\mathbf{I}}(t_{i}) \exp\left(i\mathbf{x}_{1}^{n} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}^{n}} + i\mathbf{x}_{1}^{i} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}(t_{i})}\right)$$

$$= N \lim_{n \to +\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \prod_{i=1}^{n-1} d\mathbf{x}_{\mathbf{R}}(t_{i}) d\mathbf{x}_{\mathbf{I}}(t_{i}) \exp\left(i\mathbf{x}_{1}^{n} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}^{n}} + i\mathbf{x}_{1}^{i} \frac{\partial}{\partial \mathbf{x}_{\mathbf{R}}^{i}}\right)$$

$$\times \exp\left(-\sum_{i=1}^{n} \tilde{L}_{\mathrm{FP}}(\mathbf{x}_{\mathbf{R}}(t_{i}) - i\mathbf{x}_{\mathbf{I}}(t_{i}), \mathbf{x}_{\mathbf{R}}(t_{i-1}) - i\mathbf{x}_{\mathbf{I}}(t_{i-1}), \mathbf{x}_{\mathbf{I}}(t_{i-1}))\Delta t\right).$$

$$(4.3)$$

In (4.3), the second equality is obtained by performing partial integrations with respect to $x_{\rm R}(t_i)$ (i = 1, 2, 3, ..., n-1) where we assume that surface terms vanish. After a short calculation, we have

$$L_{FP}(x_{R}(t_{i}) - ix_{I}(t_{i}), x_{I}(t_{i}), x_{R}(t_{i-1}) - ix_{I}(t_{i-1}), x_{I}(t_{i-1}))) = \frac{im}{2\hbar AB} \left(\frac{x_{I}(t_{i}) - x_{I}(t_{i-1})}{\Delta t} + F(x_{R}(t_{i}), x_{R}(t_{i-1}), x_{I}(t_{i-1}))) \right)^{2} - \frac{im}{2\hbar} \left(\frac{x_{R}(t_{i}) - x_{R}(t_{i-1})}{\Delta t} + i \frac{\partial W(x_{R}(t_{i-1}))}{\partial x_{R}(t_{i-1})} \right)^{2}$$
(4.4)

where F is a function of $x_{R}(t_{i}), x_{R}(t_{i-1}), x_{I}(t_{i-1})$ and independent of $x_{I}(t_{i})$. Operating $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx'_{1} dx''_{1} \exp[-ix''_{1}(\partial/\partial x''_{R}) - ix'_{1}(\partial/\partial x'_{R})] \text{ on } (4.3) \text{ from the left, we have}$ $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx'_{1} dx''_{1} T(x''_{R} - ix''_{1}, x''_{1}, t''|x'_{R} - ix'_{1}, x'_{1}, t')$ $= N \lim_{N \to +\infty} \int_{-\infty}^{+\infty} \dots \int_{-\infty}^{+\infty} \prod_{i=1}^{n-1} dx_{R}(t_{i}) \prod_{i=0}^{n} dx_{I}(t_{i})$ $\times \exp\left(-\sum_{i=1}^{n} \tilde{L}_{FP}(x_{R}(t_{i}) - ix_{I}(t_{i}), x_{R}(t_{i-1}) - ix_{I}(t_{i-1}), x_{I}(t_{i-1}))\Delta t\right).$ (4.5) We can then easily perform integrations with respect to $x_1(t_n), x_1(t_{n-1}), x_1(t_{n-2}), \ldots, x_1(t_0)$ in this order (these are ill-defined Gaussian integrations, but we formally perform them as we usually do in the theory of Feynman path-integral in Minkowski space), to obtain

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx_1' dx_1'' T(x_R'' - ix_1'', x_1'', t'' | x_R' - ix_1', x_1', t') = N \int_{x_R(t') = x_R'}^{x_R(t') = x_R''} \mathscr{D} x_R \exp\left[\frac{im}{2\hbar} \int_{t'}^{t''} \left(\frac{dx_R(t)}{dt} + i\frac{\partial W(x_R)}{\partial x_R}\right|_{x_R \to x_R(t)}\right)^2 dt\right].$$
(4.6)

Following the discussions on the relation between two kinds of path-integral formulations of Parisi and Wu's stochastic quantization [7], we can replace the exponent of the right-hand side of (4.6) with

$$\frac{\mathrm{i}m}{2\hbar} \int_{t'}^{t''} \left[\left(\frac{\mathrm{d}x_{\mathrm{R}}(t)}{\mathrm{d}t} \right)^2 + 2\mathrm{i} \frac{\mathrm{d}}{\mathrm{d}t} \left[W(x_{\mathrm{R}}(t)) \right] - \left(\frac{\partial W(x_{\mathrm{R}})}{\partial x_{\mathrm{R}}} \right|_{x_{\mathrm{R}} \to x_{\mathrm{R}}(t)} \right)^2 + \frac{\hbar}{m} \frac{\partial^2 W(x_{\mathrm{R}})}{\partial x_{\mathrm{R}}^2} \Big|_{x_{\mathrm{R}} \to x_{\mathrm{R}}(t)} \right] \mathrm{d}t.$$

Then, we obtain

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx_1' \, dx_1'' \, T(x_R'' - ix_1'', x_1'', t'' | x_R' - ix_1', x_1', t') \\ = N \exp\left(-\frac{m}{\hbar} \left[W(x_R(t'')) - W(x_R(t'))\right]\right) \int_{x_R(t') = x_R'}^{x_R(t') = x_R''} \mathscr{D}x_R \\ \times \exp\left\{\frac{im}{2\hbar} \int_{t'}^{t''} \left[\left(\frac{dx_R(t)}{dt}\right)^2 - \left(\frac{\partial W(x_R)}{\partial x_R}\right|_{x_R \to x_R(t)}\right)^2 \\ + \frac{\hbar}{m} \frac{\partial^2 W(x_R)}{\partial x_R^2}\right|_{x_R \to x_R(t)} dt \right\}.$$
(4.7)

Then, using (2.3), we finally have the following relation $K(x_{\rm R}'', t''|x_{\rm R}', t')$

$$= \exp\left(\frac{m}{\hbar} \left[W(x_{R}(t'')) - W(x_{R}(t'))\right] - \frac{i}{\hbar} E(t'' - t')\right) \\ \times \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx'_{1} dx''_{1} T(x''_{R} - ix''_{1}, x''_{1}, t'' | x'_{R} - ix'_{1}, x'_{1}, t')$$
(4.8*a*)

where $K(x_{R}'', t''|x_{R}', t')$ is a probability amplitude in real-time quantum mechanics for a transition from $x_{R} = x_{R}'$ at time t' to $x_{R} = x_{R}''$ at time t'', given in the Feynman path-integral representation as follows,

$$K(x_{\mathsf{R}}'',t''|x_{\mathsf{R}}',t') \equiv N \int_{x_{\mathsf{R}}(t')=x_{\mathsf{R}}'}^{x_{\mathsf{R}}(t')=x_{\mathsf{R}}'} \mathscr{D}x_{\mathsf{R}} \exp\left\{\frac{\mathrm{i}}{\hbar} \int_{t'}^{t''} \left[\frac{1}{2}m\left(\frac{\mathrm{d}x_{\mathsf{R}}(t)}{\mathrm{d}t}\right)^{2} - V(x_{\mathsf{R}}(t))\right] \mathrm{d}t\right\}.$$
(4.8b)

We have thus derived a relation between a transition probability in our theory and a transition probability amplitude in real-time quantum mechanics.

5. An example: a harmonic oscillator case

In this section, in order to illustrate the validities of results of the discussions in the preceding sections and to point out a special property of our stochastic process, we consider a harmonic oscillator as an example, for which everything is exactly solvable.

Consider the potential for a harmonic oscillator:

$$V(x) = \frac{1}{2}m\omega^2 x^2. \tag{5.1}$$

In this case, the Riccati equation (2.3) can be easily solved, to give

$$W(x) = \frac{1}{2}\omega x^2 \tag{5.2a}$$

$$E = \frac{1}{2}\hbar\omega. \tag{5.2b}$$

The Fokker-Planck equation (3.6) then becomes

$$\frac{\partial}{\partial t} P(x_{\rm R}, x_{\rm I}, t) = \hat{H} P(x_{\rm R}, x_{\rm I}, t)$$
(5.3*a*)

where

$$\hat{H} = \frac{\hbar}{4m} \left((A+B) \frac{\partial^2}{\partial x_R^2} + 2 \frac{\partial^2}{\partial x_R \partial x_I} + (A+B) \frac{\partial^2}{\partial x_I^2} \right) -\frac{\partial}{\partial x_R} (\omega x_I) + \frac{\partial}{\partial x_I} (\omega x_R).$$
(5.3b)

With an initial condition $P(x_R, x_I, t') = P_{t'}(x_R, x_I)$, we can rewrite (5.3), as follows,

$$P(x_{\rm R}, x_{\rm I}, t) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} dx_{\rm R}' \, dx_{\rm I}' \, T(x_{\rm R}, x_{\rm I}, t | x_{\rm R}', x_{\rm I}', t') P_t(x_{\rm R}', x_{\rm I}') \quad (5.4a)$$

$$(D_t - \hat{H}) T(x_R, x_I, t | x'_R, x'_I, t') = \delta(x_R - x'_R) \delta(x_I - x'_I) \delta(t - t')$$
(5.4b)

where $T(x_{\rm R}, x_{\rm I}, t | x_{\rm R}', x_{\rm I}', t')$ is the transition probability discussed in the preceding section.

Using well known procedures [8], we have a solution of (5.4b):

 $T(x_{\rm R}, x_{\rm I}, t | x_{\rm R}^{\prime}, x_{\rm I}^{\prime}, t^{\prime})$

$$= \frac{1}{4\pi^2} \theta(T) \frac{1}{\sqrt{QS - R^2}} \exp\left(-\frac{Sa^2 - 2Rab + Qb^2}{QS - R^2}\right)$$
(5.5*a*)

where

$$Q = \frac{\hbar}{4m} \left((A+B)T + \frac{1}{\omega}\sin^2(\omega T) \right)$$
(5.5b)

$$R = \frac{\hbar}{4m\omega} \sin(\omega T) \cos(\omega T)$$
(5.5c)

$$S = \frac{\hbar}{4m} \left((A+B)T - \frac{1}{\omega}\sin^2(\omega T) \right)$$
(5.5*d*)

$$a \equiv \frac{1}{2} [x_{\rm R} - \cos(\omega T) x_{\rm R}' - \sin(\omega T) x_{\rm I}']$$
(5.5e)
$$(5.5e)$$

$$b = \frac{1}{2} [x_1 + \sin(\omega T) x'_R - \cos(\omega T) x'_1]$$
(5.5*f*)

with T = t - t'.

Substituting (5.5) into the right-hand side of (4.8a), and performing a short calculation, we have

$$K(x_{\rm R}, t|x_{\rm R}', t') = N\theta(T) \left(\frac{m\omega}{2\pi {\rm i}\hbar\sin(\omega T)}\right)^{1/2} \\ \times \exp\left(\frac{{\rm i}m\omega}{2\hbar\sin(\omega T)} \left[(x_{\rm R}^2 + x_{\rm R}'^2)\cos(\omega T) - 2x_{\rm R}x_{\rm R}'\right]\right).$$
(5.6)

The right-hand side is a well known form of quantum mechanical transition probability amplitude for a harmonic oscillator.

The stochastic process defined by the Fokker-Planck equation (5.3) does not have a thermal equilibrium state as is different from cases in the imaginary-time formulation mentioned in section 2. To see this, consider the corresponding Langevin equation, written in the form

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} x_{\mathsf{R}}(t) \\ x_{\mathsf{I}}(t) \end{pmatrix} = A \begin{pmatrix} x_{\mathsf{R}}(t) \\ x_{\mathsf{I}}(t) \end{pmatrix} + \begin{pmatrix} \eta_{\mathsf{R}}(t) \\ \eta_{\mathsf{I}}(t) \end{pmatrix}$$
(5.7*a*)

where

$$A \equiv \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix}$$
(5.7*b*)

and $\eta_{\rm R}(t)$ and $\eta_{\rm I}(t)$ are random variables satisfying (3.5c-f). Dissipation behaviours of stochastic processes defined by Langevin equations of the type of (5.7a) are determined by real parts of eignevalues of As. In the present case, eigenvalues of A are $\pm i\omega$, i.e. pure imaginary. Therefore, this process is not a dissipation process and does not have a thermal equilibrium state. This reflects the time reversibility in real-time quantum mechanics.

6. Conclusions

We have shown that a stochastic process described by the Langevin equation (3.5) leads us to real-time quantum mechanics. It should be confirmed that a probability distribution in our theory, which is governed by the Fokker-Planck equation (3.6), is real positive. We have also derived a relation between a transition probability in our theory and a transition probability amplitude in real-time quantum mechanics in path-integral formulations. The relation is given by the formula (4.8a).

Finally, taking a harmonic oscillator case, we have illustrated validities of our theory by solving the Fokker-Planck equation exactly, and pointed out a non-dissipation property of the stochastic process.

We have used the terminology 'probability distribution' for $P(x_R, x_I, t)$ only for convenience. In fact, $P(x_R, x_I, t)$ does not denote a physically realistic probability distribution. In that respect, our approach is different from ones by Bohm [9] or Nelson [10].

Our theory offers alternative calculation methods based on classical stochastic mechanics. Actually, once W(x) is known, we can describe real-time quantum mechanical evolutions by the Langevin equation (3.5). Then, it is expected that we can solve real-time quantum mechanical problems by means of Monte Carlo simulations based on this Langevin equation. Furthermore, our stochastic-theoretical approach

provides us with an intuitive picture for quantum mechanics, so that it might lead us to further insights into foundations of quantum mechanics.

Acknowledgment

The author would like to thank Professor M Namiki, Professor I Ohba and Dr S Tanaka for useful discussions and valuable suggestions.

References

- [1] Schrödinger E 1931 Sitzungsb. Press. Akad. Wiss. 144 Metadier J 1931 Comptes Rendus 193 1173 Fürth R 1933 Z. Phys. 81 143 Saito N and Namiki M 1956 Prog. Theor. Phys. 16 71
- [2] Van Kampen N G 1977 J. Stat. Phys. 17 71
 Schneider T, Zannetti M and Badii R 1985 Phys. Rev. B 31 2941
 Roncadelli M Preprint CERN-TH 5360/89
- [3] Parisi G and Wu Y-S 1981 Sci. Sin. 24 483
- [4] Hüffel H and Rumpf H 1984 Phys. Lett. 148B 104
 Gozzi G 1985 Phys. Lett. 150B 119
 Nakazato H and Yamanaka Y 1986 Phys. Rev. D 34 492
 Nakazato H 1987 Prog. Theor. Phys. 77 20
- [5] Parisi G 1983 Phys. Lett. 131B 393
 Klauder J R 1984 Phys. Rev. A 29 2036
 Klauder J R and Petersen W P 1985 J. Stat. Phys. 39 53
 Ambjørn J and Yang S-K 1985 Phys. Lett. 165B 140
- [6] Wiener N 1930 Acta Math. 55 117
 Montroll E 1952 Comm. Pure. Appl. Math. 5 415
 Onsager L and Machlup S 1953 Phys. Rev. 91 1505
 Risken H 1989 The Fokker-Planck Equation 2nd edn (Berlin: Springer)
 Namiki M and Yamanaka Y 1983 Prog. Theor. Phys. 69 1764
- [7] Namiki M and Tanaka S 1989 Proc. 3rd Int. Conf. on Path Integral Form from mev to Mev (Bangkok, January 1989) ed V Sa-yakanit et al (Singapore: World Scientific)
 Nakazato H, Okano K, Schülke L and Yamanaka Y Nucl. Phys. B in press
 Kawara H, Namiki M, Okamoto H and Tanaka S Prog. Theor. Phys. in press
- [8] Namiki M 1982 Delta Function and Differential Equations (Tokyo: Iwanami) (in Japanese)
 Graham R 1978 Stochastic Processes in Nonequilibrium Systems (Lecture Notes in Physics 84) (Berlin: Springer)
- [9] Bohm D 1952 Phys. Rev. 85 166
- [10] Nelson E 1966 Phys. Rev. 150 107