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Abstract. I t  is shown that a stochastic process described by a complex Langevin equation 
leads us to real-time quantum mechanics. We also derive a relation between a transition 
probability in our theory and a transition probability amplitude in real-time quantum 
mechanics in the framework of path-integral formulations. Finally, taking a harmonic 
oscillator case as an example, the Fokker-Planck equation is solved exactly, and a non- 
dissipation property of the stochastic process is pointed out. 

1. Introduction 

Formal similarities between quantum mechanics and  the theory of stochastic processes 
have been pointed out and  investigated by many authors [ l ]  since the beginning of 
quantum mechanics. It is well known that the Schrodinger equation for a free particle 
has the same form as the diffusion equation for free Brownian motion, in the following 
way. The Schrodinger equation for a free particle is 

a h2  a’ 
a t  2m ax 

i h - - ( x , t ) =  - - - T - ( X , Z )  

where m, h and V(x, t )  are the particle mass, Planck constant and  wavefunction, 
respectively. Through the replacement 

i r + s  WX, t )  + w x ,  s )  (1.2) 

t and s being real-time and  imaginary-time, respectively, (1.1) turns to the diffusion 
equation for free Brownian motion and  diffusion constant a = h / 2 m :  

a a’ - q(x ,  s )  = a 7 V(x, s). 
as ax (1.3) 

As is also well known [2], the above analogy can be generalized to the case for a 
particle in a potential. Imaginary-time quantum mechanical motion of a particle in a 
potential can also be described by a Fokker-Planck equation, or  by a corresponding 
Langevin equation. Thus imaginary-time quantum mechanics can be formulated within 
the stochastic-theoretical framework. This formulation seems to be useful for numerical 
simulations. 

From the fundamental point of view, however, it would be important to examine 
whether real-time quantum mechanics can also be formulated within the stochastic- 
theoretical framework. This is the task of the present paper. At first sight this seems 
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to be not so easy, because a straightforward application of the manipulation of the 
stochastic formulation of imaginary-time quantum mechanics to real-time quantum 
mechanics leads us to a complex Fokker-Planck function. Such a function cannot be 
explained as a probability distribution. In this paper, we overcome this difficulty by 
means of a complex Langevin equation which yields a real positive probability distri- 
bution. 

This paper is organized as follows. In section 2, for convenience for later discussions, 
we briefly review the stochastic formulation of imaginary-time quantum mechanics. 
In section 3, we present such a complex Langevin equation and show that it leads us 
to the real-time Schrodinger equation. In section 4, we derive a relation between a 
transition probability in our theory and a transition probability amplitude in real-time 
quantum mechanics in the framework of path-integral formulations of both theories. 
In section 5, taking a harmonic oscillator case as an example, the Fokker-Planck 
equation is solved exactly, and a non-dissipation property of the stochastic process is 
pointed out. Section 6 is devoted to concluding remarks. 

2. Stochastic formulation of imaginary-time quantum mechanics 

The Schrodinger equation for a particle in a potential V ( x )  is 

Through the replacement (1.2), (2.1) turns to the imaginary-time Schrodinger equation 

) V ( x )  9 ( x , s ) .  

Let us introduce a function, W ( x ) ,  which is a solution of the following Riccati-type 
differential equation: 

where E is a suitable constant which will be determined later. By the transformation 

h 
m 

W ( x )  = --In q ( x )  

(2.3) becomes the quantum mechanical Hamiltonian eigenequation 

-- -+ V i x ) )  q ( x )  = E q ( x ) .  
2m ax2 

(2.4) 

(2.5) 

Hereafter, we shall require W ( x )  to be a real function. Then, q ( x )  > 0 for all x. This 
means that the only permissible solution of (2.5) is the ground state; q ( x )  = q o ( x ) ,  
E = E o .  Substituting (2.3) into (2.2), we have 

Further introducing a function, P ( x ,  s), defined by 

(2.7) 
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we see that P ( x ,  s)  obeys 

a h a’ 
as 

which is a Fokker-Planck equation for a stochastic process with drift velocity a W ( x ) / a x  
and diffusion constant h / 2 m .  This stochastic process can also be described by a 
stochastic differential equation, i.e. a Langevin equation given in the form 

d - x ( s )  = -- 
d s  

( 2 . 9 ~ )  

where ~ ( s )  is a Gaussian white noise which satisfies the following statistical properties: 

( r ] ( s ) )  = 0 (2.9 6 )  

( v ( s ) r ] ( s ’ ) ) = -  6(s -s ’ ) .  ( 2 . 9 ~ )  

If the Schrodinger equation (2 .1)  gives a finite-energy ground state which is normaliz- 
able and  non-degenerate, the above stochastic process gives a thermal equilibrium 
state at  the limit s+m. The n-point stochastic correlation function at this thermal 
equilibrium coincides with the n-point ground-state-to-ground-state Green function in 
imaginary-time quantum mechanics. Actually, Schneider et a1 [ 21 calculated this Green 
function by a numerical simulation based on the Langevin equation (2 .9) .  

h 
m 

3. Stochastic formulation of real-time quantum mechanics based on a complex 
Langevin equation 

In order to make a transition from the imaginary-time formulation reviewed in the 
preceding section to the real-time formulation, first we introduce the replacement 

s + i t  x ( s )  + x ( t )  v ( s ) +  -iv(t) .  (3 .1)  

Then, the imaginary-time Langevin equation (2 .9)  turns to the form 

(77( t ) )  = 0 (3 .26)  

( r ]  ( t )  77 ( t ’ ) )  = - 6 ( t - t ’ ) .  ( 3 . 2 ~ )  
i h  
m 

For derivation of ( 3 . 2 ~ )  from (2 .9c) ,  we have used the formal relation 6[ i ( t -  t ’ ) ] =  
( l / i ) s ( t  - t ’ ) .  

To make sense of (3 .2) ,  we must consider x ( t )  and v ( r )  to be complex variables 
because of the imaginary coefficients in (3 .2) .  Then, we must treat (3.2) as a Langevin 
equation for real and imaginary parts of x ( r ) .  Such an equation is called the complex 
Langevin equation. Methods of the complex Langevin equation, which we use 
throughout this paper, have been investigated and  developed in relation to the 
Minkowski formulation of Parisi and Wu’s stochastic quantization [4] and numerical 
simulations of complex systems [ 5 ] .  
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In ( 3 . 2 a ) ,  W(x) is also determined by the Riccati-type differential equation (2 .3) .  
In the imaginary-time formulation, we have required W(x)  to be a real function. In 
the real-time formulation, W(x)  is not necessarily a real function because (3 .2)  is a 
complex-valued equation. In this paper, however, we shall successively require W( x)  
to be a real function for simplicity. Notice that in ( 3 . 2 a )  a W(x)/axl.,,,,, is complex 
although W(x)  is real. 

One of the simplest ways to define the complex random variable v ( t )  satisfying 
(3.2b, c )  in terms of real Gaussian white noises is 

(3 .4c)  

The equation ( 3 . 2 a )  is now decomposed into real and imaginary parts, as follows, 

(3 .5a)  

(3 .56)  

(3 .5e)  
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It follows from the general theory of stochastic processes that the stochastic process 
given by (3 .5)  is also described by a real positive probability distribution, P(x,, x , ,  t ) ,  
which obeys the following Fokker-Planck equation: 

(3 .6)  

Next, we shall show that (3 .6)  leads us to the real-time Schrodinger equation. For 
the purpose of this, we introduce the effective Fokker- Planck distribution, PeR( x,, t ) ,  
defined by 

(3.7) 

Notice that Peff (x,, t )  is complex although P ( x R ,  x , ,  t )  is real. 
Operating a translation operator, exp[-ix,(a/ax,)], on (3.6) from the left, and 

performing an integration with respect to x, from -cc to +CO, we obtain the effective 
Fokker- Planck equation 

(3.8)  

For the derivation of (3 .8) ,  we have used the following formulae 

exp (-ix, "> xR exp ( ix, "-> = xR - ix, 
ax, ax, 

( 3 . 9 ~ )  

exp (-ix, L) x, exp (ix, 

e x p ( - i x , L ) q e x p ( i x , L )  =-+i- a a 

ax, 

exp (-ix, a 
L) exp (ix, "> = - 

ax, ax, ax, 

ax, ax, ax, dx, 

and assumed that surface terms caused by the integration vanish. 
Further introducing a function, *(x,, t ) ,  defined by 

1 

h 
q ( x R ,  t ) z  exp( -- (iEt - m W ( x R ) ) )  Peff(xR,  t )  

we see that vI(xR, t )  obeys the real-time Schrodinger equation 

(3 .9b )  

(3 .9c)  

(3 .9d )  

(3 .10)  

(3.11) 

where (2 .3)  has been used. 

(3 .5)  leads us to real-time quantum mechanics. 
We have thus shown that the stochastic process described by the Langevin equation 
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4. Path-integral formulation 

In this section, we shall derive a relation between a transition probability in our theory 
and a transition probability amplitude in real-time quantum mechanics. For such a 
derivation, it will be convenient to work in path-integral formulations of both theories. 

Let T(xg ,  xy, t”ixk, x i ,  t’) be a probability in our theory for a transition from 
(xR,  xI)  = (xk ,  xi) at time t‘ to (xR,  x , )  = (xg,  x;) at time t”. Following the general 
theory of stochastic processes, we can write this probability amplitude in the Wiener- 
Onsager-Machlup path-integral representation [6], as follows, 

T(x;,x;, t ” lxk ,x i ,  t )  
I r i R ( f  ) . r i , i r  ) ) = i x R , r , )  

( X , ( f  ) , Y , i f  ) l = l Y R , Y , )  

= N I  9 X R  9x1 

(4 . la )  

(4.lb) 

In (4.1) and in the following, N represents a proper normalization constant in each 
formula. 

It is more convenient for later calculations to rewrite (4.1) in the discretized form 

T(x;, x;, t”lxk, xi ,  1 ’ )  

+= n - 1  Tcc 

= N,!ycc . . . I II dXR(tr) dxl( t l )  
-* , = I  

with 
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We can rewrite (4.2a), as follows, 

T(xL, x;, t”ixk, xi, f ’ )  

+= n - l  

n - + 5  --r --3c , = I  
= N lim I“;. . . I n dXR(t,) dX,(f,) 

n dxR( t , )  dxl( t , )  exp 
+= n - l  +T 

= N I-, . . . I -zc r = 1  

In (4.3), the second equality is obtained by performing partial integrations with respect 
to xR( t,) ( i  = 1,2 ,3 , .  . . , n - 1) where we assume that surface terms vanish. After a 
short calculation, we have 

L ( x R ( r 1 )  - ixi(tt), x,(t,), xR(tr-I) - ixl(t l- l  ), X I (  tl-l ) )  

where F is a function of xR( f r ) ,  xR( 
j-, j-, dxl dx;’ exp[-ixl(d/axff) -ixl(d/Jxk)] on (4.3) from the left, we have 

x , ( ? ~ - ~ )  and independent of xI(  t,).  Operating 
+cc +m 

dxj dx;T(xL-ixj’, XI ,  t”ixk-ixi, xi, t’) 
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We can then easily perform integrations with respect to x,( t , , ) ,  X I (  tn- , ) ,  
xI(  t n - * ) ,  . . . , xl(  t o )  in this order (these are ill-defined Gaussian integrations, but we 
formally perform them as we usually do  in the theory of Feynman path-integral in 
Minkowski space), to obtain 

dxj dxp T(xA-ix;' ,x;, t " ixk- ix i ,x ; ,  t ' )  

Following the discussions on the relation between two kinds of path-integral formula- 
tions of Parisi and Wu's stochastic quantization [7], we can replace the exponent of 
the right-hand side of (4.6) with 

Then, we obtain 

dxi d x l  T(xk- ix l ,  xy, t"lxk-ixi, x i ,  t ' )  

(4.7) 

Then, using ( 2 . 3 ) ,  we finally have the following relation 

K ( x k ,  t"lxk, t ' )  

dxidx:  T(xA-ixr,x; ,  t" /xk-ix; ,x; ,  t ' )  ( 4 . 8 ~ )  

where K ( x $ ,  t"lxk, t ' )  is a probability amplitude in real-time quantum mechanics for 
a transition from x R = x k  at time t' to x R = x k  at time t" ,  given in the Feynman 
path-integral representation as follows, 

We have thus derived a relation between a transition probability in our theory and 
a transition probability amplitude in real-time quantum mechanics. 
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5. An example: a harmonic oscillator case 

In this section, in order to illustrate the validities of results of the discussions in the 
preceding sections and to point out a special property of our stochastic process, we 
consider a harmonic oscillator as an example, for which everything is exactly solvable. 

Consider the potential for a harmonic oscillator: 

V ( X )  = fmw‘x’. (5.1) 

In this case, the Riccati equation ( 2 . 3 )  can be easily solved, to give 

W(x) = fox2 ( 5 . 2 ~ )  

E = f h w .  ( 5 . 2 b )  

The Fokker-Planck equation (3 .6)  then becomes 

( 5 . 3 ~ )  a 
a t  
-p(xR,xI, t ) = f i p ( X R , X I ~  t )  

where 

(5 .3b )  

With an initial condition P(xR, xI ,  t’) = Pr8(xR,  xi), we can rewrite (5 .3 ) ,  as follows, 

dxkdx; T(xR, X I ,  tlxk, xi, t’)P,.(xk, xi) ( 5 . 4 ~ )  
P ( X R , X i ,  t ) =  J-: J, 
( D ,  - f i ) T ( x ~ ,  X I ,  fix;, X i ,  t’) = 6(XR-Xk)6(XI-Xi)6(f - f ’ )  ( 5 . 4 6 )  

where T(xR, xI ,  tlxk, xi, t‘) is the transition probability discussed in the preceding 
section. 

Using well known procedures [8], we have a solution of (5 .4b ) :  

T ( X R , X I ,  t l xk ,  t ’ )  

-- 1 1 exp( - S a 2 - 2 R a b + Q b 2  

Q S -  R~ 
( 5 . 5 ~ )  

where 

1 
4m W 

( A  + B )  T + -  sin2(wT) 

A 
4mw 

R 3-sin(wT) cos(wT) 

4 m  w 

a = +[xR - c o s ( w T ) x k  -sin(wT)x;] 

b = ~ [ x , + s i n ( w T ) x k - c o s ( w T ) x j ]  

(5 .56)  

(5 .5c)  

( 5 . 5 d )  

(5 .5e )  

(5.5.f 1 
with T = t - t ’ .  
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Substituting ( 5 . 5 )  into the right-hand side of (4 .8u) ,  and performing a short calcula- 
tion, we have 

The right-hand side is a well known form of quantum mechanical transition probability 
amplitude for a harmonic oscillator. 

The stochastic process defined by the Fokker-Planck equation (5.3) does not have 
a thermal equilibrium state as is different from cases in the imaginary-time formulation 
mentioned in section 2. To see this, consider the corresponding Langevin equation, 
written in the form 

where 

( 5 . 7 ~ )  

( 5 . 7  b )  

and vR( t )  and vl (  t )  are random variables satisfying (3.5~-f). Dissipation behaviours 
of stochastic processes defined by Langevin equations of the type of (5.7~) are 
determined by real parts of eignevalues of As. In the present case, eigenvalues of A 
are *iw, i.e. pure imaginary. Therefore, this process is not a dissipation process and 
does not have a thermal equilibrium state. This reflects the time reversibility in real-time 
quantum mechanics. 

6. Conclusions 

We have shown that a stochastic process described by the Langevin equation (3.5) 
leads us to real-time quantum mechanics. I t  should be confirmed that a probability 
distribution in our theory, which is governed by the Fokker-Planck equation (3.6), is 
real positive. We have also derived a relation between a transition probability in our 
theory and a transition probability amplitude in real-time quantum mechanics in 
path-integral formulations. The relation is given by the formula ( 4 . 8 ~ ) .  

Finally, taking a harmonic oscillator case, we have illustrated validities of our 
theory by solving the Fokker-Planck equation exactly, and pointed out a non-dissipa- 
tion property of the stochastic process. 

We have used the terminology ‘probability distribution’ for P ( x R ,  xI, t )  only for 
convenience. In fact, P(x, ,  xI, t )  does not denote a physically realistic probability 
distribution. In that respect, our approach is different from ones by Bohm [9] or Nelson 

Our theory offers alternative calculation methods based on classical stochastic 
mechanics. Actually, once W(x) is known, we can describe real-time quantum 
mechanical evolutions by the Langevin equation (3.5). Then, it is expected that we 
can solve real-time quantum mechanical problems by means of Monte Carlo simulations 
based on this Langevin equation. Furthermore, our stochastic-theoretical approach 

[IO]. 
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provides us with an intuitive picture for quantum mechanics, so that it might lead us 
to further insights into foundations of quantum mechanics. 
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